Custom DataSource
Build Your Own Bitcoin Data Provider
Create custom data sources to integrate any Bitcoin data provider with LaserEyes. Perfect for specialized use cases and custom infrastructure.
Features
Custom Implementation
Build data sources tailored to your specific needs, from custom APIs to specialized blockchain indexers.
Modular Design
Mix and match different data sources, with automatic fallback support and priority handling.
Performance Control
Optimize performance with custom caching strategies, request batching, and error handling.
Extensible Interface
Implement only the methods you need, with TypeScript ensuring type safety throughout.
Implementation Guide
Custom Data Source
import { DataSource, DataSourceConfig } from '@omnisat/lasereyes-core'
interface CustomConfig extends DataSourceConfig {
apiKey?: string
baseUrl: string
}
export class CustomDataSource implements DataSource {
private config: CustomConfig
constructor(config: CustomConfig) {
this.config = config
}
async getBalance(address: string): Promise<string> {
const response = await fetch(`${this.config.baseUrl}/balance/${address}`)
const data = await response.json()
return data.balance
}
async getTransaction(txid: string): Promise<any> {
const response = await fetch(`${this.config.baseUrl}/tx/${txid}`)
return response.json()
}
// Implement other methods as needed...
}
Configuration
Setup
import { LaserEyesClient, createConfig } from '@omnisat/lasereyes-core'
import { CustomDataSource } from './custom-datasource'
const config = createConfig({
dataSources: {
custom: new CustomDataSource({
baseUrl: 'https://your-api.com',
apiKey: 'your-api-key',
priority: 1
}),
mempool: { // Fallback source
priority: 2
}
}
})
const client = new LaserEyesClient(config)
Advanced Examples
Caching Implementation
export class CachedDataSource implements DataSource {
private cache: Map<string, { data: any, timestamp: number }>
private ttl: number // Time to live in ms
constructor(config: CustomConfig) {
this.cache = new Map()
this.ttl = config.cacheTTL || 60000 // 1 minute default
}
private getCached<T>(key: string): T | null {
const cached = this.cache.get(key)
if (!cached) return null
if (Date.now() - cached.timestamp > this.ttl) {
this.cache.delete(key)
return null
}
return cached.data as T
}
private setCache(key: string, data: any): void {
this.cache.set(key, {
data,
timestamp: Date.now()
})
}
async getBalance(address: string): Promise<string> {
const cacheKey = `balance:${address}`
const cached = this.getCached<string>(cacheKey)
if (cached) return cached
const balance = await super.getBalance(address)
this.setCache(cacheKey, balance)
return balance
}
}
Batch Processing
export class BatchDataSource implements DataSource {
private batchSize: number
private batchDelay: number
private queue: Map<string, Promise<any>>
constructor(config: CustomConfig) {
this.batchSize = config.batchSize || 10
this.batchDelay = config.batchDelay || 100
this.queue = new Map()
}
private async processBatch(addresses: string[]): Promise<Record<string, string>> {
const response = await fetch(this.config.baseUrl + '/batch', {
method: 'POST',
body: JSON.stringify({ addresses })
})
return response.json()
}
async getBalance(address: string): Promise<string> {
if (this.queue.has(address)) {
return this.queue.get(address)!
}
const promise = new Promise<string>(async (resolve) => {
await new Promise(r => setTimeout(r, this.batchDelay))
const batch = Array.from(this.queue.keys()).slice(0, this.batchSize)
const results = await this.processBatch(batch)
resolve(results[address])
})
this.queue.set(address, promise)
return promise
}
}
Best Practices
Error Handling
Implement proper error handling and normalize errors to match the LaserEyes error format.
Rate Limiting
Add rate limiting and request queuing to prevent API abuse and handle throttling gracefully.
Data Normalization
Normalize response data to match the expected format of other data sources for consistency.
Performance
Implement caching and batch processing where appropriate to optimize performance.